Клиническое значение и методы определения минимальной диссеминированной и минимальной остаточной болезни при неходжкинских лимфомах у детей: обзор литературы (А.С. Фёдорова)

A.S. Fedorova

Аннотация


Несмотря на хорошие результаты лечения неходжкинских лимфом (НХЛ) у детей и более низкую токсичность современных версий терапевтических протоколов, частота рецидивов остается практически неизменной, и прогноз при возврате заболевания в большинстве случаев неблагоприятный. Одним из наиболее весомых предикторов развития рецидива может служить оценка минимальной диссеминированной и минимальной остаточной болезни. Учитывая гетерогенность и относительную редкость НХЛ, необходимы крупные исследования для установления приоритетной мишени, метода ее определения, порога позитивности и контрольных точек исследования для каждого варианта НХЛ.

(Для цитирования: Фёдорова А.С. Клиническое значение и методы определения минимальной диссеминированной и минимальной остаточной болезни при неходжкинских лимфомах у детей: обзор литературы. Онкопедиатрия. 2015; 2 (2): 91–97. Doi: 10.15690/onco.v2i2.1339)


Ключевые слова


неходжкинские лимфомы; дети

Полный текст:

PDF

Литература


Reiter A., Schrappe M., Ludwig W.D. et al. Intensive ALL-type therapy without local radiotherapy provides a 90% event-free survival for children with T-cell lymphoblastic lymphoma: A BFM group report. Blood. 2000; 95: 416–421.

Burkhardt B., Woessmann W., Zimmermann M. et al. Impact of cranial radiotherapy on central nervous system prophylaxix in children and adolescents with central nervous system-negative stage III or IV lymphoblastic lymphoma. J Clin Oncol. 2006; 24: 491–499.

Patte C., Auperin A., Gerrard M. et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood. 2007; 109: 2773–2780.

Le Deley M.-C., Reiter A., Williams D. et al. Prognostic factors in childhood anaplastic large cell lymphoma: results of a large European intergroup study. Blood. 2008; 111: 1560–1566.

Le Deley M.-C., Rosolen A., Williams D. et al. Vinblasine in children and adolescents with high-risk anaplastic large-cell lymphoma: results of the randomized ALCL99-vinblasine trial. J Clin Oncol. 2010; 28: 3987–3993.

Borowitz M.J., Devidas M., Hunger S.P. et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s Oncology Group study. Blood. 2008; 111: 5477–5485.

Shultz K., Pullen D.J., Sather H., Shuster J. et al. Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children’s Cancer Group (CCG). Blood. 2007; 109: 926–935.

Davies S., Borowitz M., Rosner G., Ritz K. et al. Pharmacogenetics of minimal residual dosease response

in children with B-precursur acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood. 2008; 111: 2984–2990.

Popov A.M., Verzhbitskaia T.Yu., Tsaur G.A. et al. Minimal residual disease monitoring by simplified flow cytometry assay in children with pre-b-cell acute lymphoblastic leukemia: advantages and limitations. Haematopoiesis Immunology. 2010; 2: 21–28.

Basso G., Veltroni M., Valsecchi M.G. et al. Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol. 2009; 27: 5168–5174.

Ratei R., Basso G., Dworzak M. et al. Monitoring treatment response of childhood precursors B-cell acute lymphoblastic leukemia in the AIEOP-BFM-ALL 2000 protocol with multiparameter flow cytometry: predictive impact of early blast reduction on the remission status after induction. Leukemia. 2006; 20: 1422–1429.

Grivtsova L., Popa A., Serebryakova I., Tupitsyn N. To further standartization in detection of residual blasts in bone marrow of children with B-cell acute lymphoblastic leukemia on day 15 of induction therapy. Haematopoiesis Immunology. 2011; 1: 36–54.

Flohr T., Schrauder A., Cazzaniga G. et al. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia. 2008; 22: 771–782.

Sandlung J., Downing J., Crist W. Non-Hodgkin’s lymphoma in childhood. N Engl J Med. 1996; 334: 1238–1248.

Coustan-Smith E., Sandlung J.T., Perkins S.L. et al. Minimal disseminated disease in childhood T-cell lymphoblastic lymphoma: a report from the children’s oncology group. J Clin Oncol. 2009; 27: 3533–3539.

Stark B., Avigad S., Luria D. et al. Bone marrow minimal disseminated disease (MDD) and minimal residual disease (MRD) in childhood T-cell lymphoblastic lymphoma stage III, detected by flow cytometry (FC) and real-time quantitative polymerase chain reaction (RQ-PCR). Pediatr Blood Cancer. 2009; 52: 20–25.

Mussolin L., Pillon M., d’Amore E.S. et al. Prevalence and clinical implications of bone marrow involvement in pediatric anaplastic large cell lymphoma. Leukemia. 2005; 19: 1643–1647.

Damm-Welk C., Busch K., Burkhardt B. et al. Prognostic significance of circulating tumor cells in bone marrow or peripheral blood as detected by qualitative and quantitative PCR in pediatric NPM-ALK-positive anaplastic large cell lymphoma. Blood. 2007; 110: 670–677.

Damm-Welk C., Mussolin L, Zimmermann M. et al. Early assessment of minimal residual disease identifies patients at very high relapse risk in NPM-ALK-positive anaplastic large-cell lymphoma. Blood. 2014; 123: 334–337.

Kalinova M., Krskova L., Brizova H. et al. Quantitative PCR detection of NPM/ALK fusion gene and CD30 gene expression in patients with anaplastic large cell lymphoma — residual disease monitoring and a correlation with the disease status. Leuk Res. 2008; 32: 25–32.

Damm-Welk C., Schieferstein J., Schwalm S. et al. Flow cytometric detection of circulating tumour cells in nucleophosmin/anaplastic lymphoma kinase-positive anaplastic large cell lymphoma: comparison with quantitative polymerase chain reaction. Br J Haematol. 2007; 138: 459–466.

Mussolin L., Bonvini P., Ait-Tahar K. et al. Kinetics of humoral response to ALK and its relationship with minimal residual disease in pediatric ALCL. Leukemia. 2009; 23: 400–402.

Mussolin L., Damm-Welk C., Pillon M. et al. Use of minimal disseminated disease and immunity to NPM-ALK antigen to stratify ALK-positive ALCL patients with different prognosis. Leukemia. 2013; 27: 416–422.

Ait-Tahar K., Damm-Welk C., Burkhardt B. et al. Correlation of the autoantibody response to the ALK oncoantigen in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma with tumor dissemination and relapse risk. Blood. 2010; 115: 3314–3319.

Busch K., Borkhardt A., Wosmann W. et al. Combined polymerase chain reaction methods to detect c-myc/IgH rearrangement in childhood Burkitt’s lymphoma for minimal residual disease analysis. Haematologica. 2004; 89: 818–825.

Mussolin L., Basso L., Pillon M. et al. Prospective analysis of minimal bone marrow infiltration in pediatric Burkitt’s lymphomas by long-distance polymerase chain reaction for t(8;14)(q24;q32). Leukemia. 2003; 17: 585–589.

Mussolin L., Pillon M., d’Amore E.S. et al. Minimal disseminated disease in high-risk Burkitt’s lymphoma identifies patients with different prognosis. J Clin Oncol. 2011; 29: 1779–1784.

Akasaka T., Muramatsu M., Ohno H. et al. Application of long-distance polymerase chain reaction to detection of junctional sequences created by chromosomal translocation in mature B-cell neoplasms. Blood. 1996; 88: 985–994.

Mussolin L., Pillon M., Conter V. et al. Prognostic role of minimal residual disease in mature B-cell acute lymphoblastic leukemia of childhood. J Clin Oncol. 2007; 25: 5254–5261.

Sabesan V., Cairo M.S., Lones M.A. et al. Assessment of minimal residual disease in childhood non-Hodgkin lymphoma by polymerase chain reaction using patient-specific primers. J Pediatr Hematol Oncol. 2003; 25: 109–113.

Schreuder M., Hoeve M., Groothuis L. et al. Monitoring gastric lymphoma in peripheral blood by quantitative IgH allelespecific oligonucleotide real-time PCR and API2-MALT1 PCR. Br J Haematology. 2005; 131: 619–623.

Lovisa F., Mussolin L., Corral L. et al. IGH and IGK gene rearrangements as PCR targets for pediatric Burkitt’s lymphomas and mature B-ALL MRD analysis. Lab Invest. 2009; 89: 1182–1186.

Shiramizu B., Goldman S., Kusao I. et al. Minimal disease assessment in the treatment of children and adolescents with intermediate-risk (stage III/IV) B-cell non-Hodgkin lymphoma: a Children’s Oncology Group report. Br J Haematol. 2011; 153: 758–763.

Agsalda M., Kusao I., Troelstrup D. et al. Screening for residual disease in pediatric Burkitt lymphoma using conse




DOI: http://dx.doi.org/10.15690/onco.v2i2.1339

Ссылки

  • На текущий момент ссылки отсутствуют.