Сравнительная характеристика субпопуляций лимфоцитов костного мозга детей, больных острыми лейкозами, рабдомиосаркомой и саркомой Юинга

O. P. Kolbatskaya, T. V. Gorbunova, V. G. Polyakov, N. N. Tupitsyn, A. V. Popa, I. N. Serebryakova, V. V. Timoshenko, T. V. Shvedova

Аннотация


В отечественной и зарубежной литературе еще недостаточно данных об иммунной системе костного мозга детей в норме и при развитии острых лейкозов и солидных опухолей. Целью работы стало изучение количественных особенностей субпопуляционного состава лимфоцитов костного мозга детей при развитии острых лейкозов и мелкокруглоклеточных сарком (рабдомиосаркомы и саркомы Юинга). Материалы и методы. В исследование включены 111 детей в возрасте от 9 мес до 17 лет, средний возраст ― 7,6±0,4 года. Рабдомиосаркома была диагностирована у 16 детей, саркома Юинга (СЮ) ― у 16, острый лимфобластный лейкоз (ОЛЛ) ― у 38, острый миелоидный лейкоз (ОМЛ) ― у 26. У 15 детей в ходе проведенного комплексного обследования наличие злокачественного заболевания было исключено (группа сравнения). Всем пациентам было выполнено морфологическое и иммунологическое исследование костного мозга. Результаты.  Характерным изменением субпопуляционного состава костного мозга больных при обоих видах сарком является повышение процента CD3+HLADR+ и CD8+HLADR+ Т клеток и снижение процента Leu8+CD4+ Т клеток по сравнению с данными контрольной группы (p<0,05). Но только у больных СЮ отмечалось абсолютное повышение количества CD8+HLADR+ Т клеток (4,6±1,0 против 1,8±0,4 тыс/мкл; р=0,030), а также снижение относительного и абсолютного количества Leu8+CD4+ субпопуляции (13,7±2,4 против 33,5±4,7%, р=0,001; 2,2±0,8 против 5,3±1,1 тыс/мкл, р=0,031). Для обоих вариантов ОЛ сходным было повышение процента CD5+ Т клеток и снижение процента CD8+ Т клеток (р<0,05), абсолютные значения не отличались от контрольных (p>0,05). Сравнение субпопуляционного состава лимфоцитов костного мозга больных ОМЛ и ОЛЛ выявило достоверные различия только в процентах CD19+ и CD19+CD5+ В клеток, которые были достоверно ниже у больных ОМЛ (13,4±1,8 против 19,5±2,1%; р=0,033 и 2,2±0,5 против 4,7±0,8%, соответственно; р=0,016). При ОЛ в большей степени был снижен процент цитотоксических Т лимфоцитов (ЦТЛ), чем при саркомах, максимальное относительное содержание CD8+Т клеток было в костном мозге больных рабдомиосаркомой. Содержание Т хелперов во всех четырех группах больных достоверно не различалось между собой в относительных и абсолютных числах (p>0,05). Выводы. На основании проведенного нами комплексного морфологического и иммунологического исследования установлено, что злокачественные заболевания характеризуются специфическими для каждой нозологической формы изменениями субпопуляционного состава Т и В лимфоцитов костного мозга, что позволяет выявить их клиническое и прогностическое значение, лучше понимать механизмы взаимодействия опухоли и иммунной системы и может быть полезным при разработке программ иммунотерапии.


Ключевые слова


субпопуляции лимфоцитов; костный мозг; острые лейкозы; Т лимфоциты; В лимфоциты; NK клетки; саркома Юинга; рабдомиосаркома

Литература


Feuerer M, Beckhove P, Garbi N, Mahnke Y, Limmer A, Hommel M, Hammerling GJ, Kyewski B, Hamann A, Umansky V, Schirrmacher V. Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nat Med. 2003Sep;9(9):1151−7.

Yotnda P, Mintz P, Grigoriadou K, Lemonnier F, Vilmer E, Langlade-Demoyen P. Analysis of T-cell defects in the specific immune response against acute lymphoblastic leukemia cells. Exp Hematol. 1999;27:1375−1383.

Дейчман Г.И., Кашкина Л.М., Ключарева Т.Е., Матвеева В.А. и др. Влияние клеток костного мозга, селезенки и перитонеального экссудата на метастазирование опухолевых клеток в легкие сибирских хомячков. Бюл. эксперим. биологии и медицины. 1982;XCIV(10):102−105.

Трапезников Н.Н, Тупицын Н.Н., Барышников А.Ю. и др. Иммунопатогенетические аспекты саркомы Юинга. Вестн. онкологического научного центра им. Н.Н. Блохина РАМН (Москва). 1998;1:41−49.

Madhumathi D, Premalata C, Devi V, et al. / Bone marrow involvement at presentation in pediatric non-haematological small round cell tumours. Indian J Pathol Microbiol. 2007;50(4):886−889.

Cho D, Shook D, Shimasaki N, et al. Cytotoxicity of activated natural killer cells against pediatric solid tumours. Clin Cancer Res. 2010;16:3901−3909.

Fan Z, Yu P, Wang Y, et al. NK-cell activation by LIGT triggers tumor-specific CD8+ T-cell immunity to reject established tumours. Blood. 2006;107(4):1342−1351.

Caccamo N, Dieli F, Meraviglia S, et al. Tγδ cell modulation in anticancer treatment. Cur Cancer Drug Targets. 2010;10:27−36.

Serrano D, Monteiro J, Allen S, et al. Clonal expansion within the CD4+CD57+ and CD8+CD57+ T cell subsets in chronic lymphocyte leukemia. J Immunol. 1997;158(3):1482−1489.

Buzyn A, Petit F, Ostankovitch M, Figueiredo S, Varet B, Guillet J-G, Ameisen J-C, Estaquier J. Menbrane-bound Fas (APO-1/CD95) ligand on leukemic cells: a mechanism of tumor immune escape in leukemia patients. Blood. 1999;94(9):3135−3140.

Buggins AGS, Arno MJ, Milojkovic D, et al. Characterization of an AML-derived immunomodulatory factor(s) that inhibit T cell activation and the signal transduction pathways involved. Blood. 2000;96:501a.

Колбацкая О.П., Тупицын Н.Н. Субпопуляции лимфоцитов костного мозга больных острыми лейкозами в период диагностики заболевания. Иммунология. 2012;33(2):77−82.




DOI: http://dx.doi.org/10.15690/onco.v3i2.1543

Ссылки

  • На текущий момент ссылки отсутствуют.